Prediksi Harga Beras Berdasarkan Kualitas Beras dengan Metode LSTM

Nur Nafiiyah

Abstract


Berdasarkan penelitian sebelumnya terkait memprediksi harga beras, bahwa beras merupakan kebutuhan primer bagi masyarakat Indonesia. Sehingga dibutuhkan model yang bisa memprediksi harga beras di waktu selanjutnya yang mendekati harga aktual di Indonesia. Kami mengusulkan arsitektur LSTM untuk memprediksi harga beras. Tujuan penelitian ini membuat model arsitektur LSTM untuk memprediksi harga beras berdasarkan kualitas, yaitu premium, medium, dan luar kulit. Data yang digunakan mulai tahun 2019 sampai 2021, total dataset 36 baris. Data training 28 baris, dan data tes 8 baris. Kami memprediksi berdasarkan urutan waktu, waktu yang digunakan untuk memprediksi berdasarkan 4 waktu sebelumnya. Arsitektur yang dibuat adalah layer input, 3 layer hidden LSTM, dan layer output, yaitu 4-50-50-50-1. Hasil evaluasi MAE dari prediksi harga beras premium, medium, dan luar kulit secara berurutan adalah 83.49, 89.6, 96.99.

References


N. Nafi and M. Khudori, “Rice Price Prediction System Based on Rice Quality and Milling Level using Multilayer Perceptron,†vol. 7, no. 1, pp. 39–43, 2022.

R. Ramadania, “Peramalan Harga Beras Bulanan di Tingkat Penggilingan dengan Metode Weighted Moving Average,†Bimaster, vol. 7, no. 4, 2018.

Nur Nafi’iyah and E. Rakhmawati, “Analisis Regresi Linear dan Moving Average Dalam Memprediksi Data Penjualan Supermarket,†J. Teknol. Inf. DAN Komun., vol. 12, no. 1, 2021, doi: 10.51903/jtikp.v12i1.230.

S. Sen, D. Sugiarto, and A. Rochman, “Komparasi Metode Multilayer Perceptron (MLP) dan Long Short Term Memory (LSTM) dalam Peramalan Harga Beras,†ULTIMATICS, vol. XII, no. 1, 2020.

R. Bagaskara and R. Putra, “Multivariate Time Series Forecasting pada Penjualan Barang Retail dengan Recurrent Neural Network,†pp. 71–82, 2022.

A. A. Fardhani, D. I. N. Simanjuntak, and A. Wanto, “Prediksi Harga Eceran Beras Di Pasar Tradisional Di 33 Kota Di Indonesia Menggunakan Algoritma Backpropagation,†J. Infomedia, vol. 3, no. 1, 2018.

A. Noor, “Perbandingan Algoritma Support Vector Machine Biasa dan Support Vector Machine berbasis Particle Swarm Optimization untuk Prediksi Gempa Bumi,†J. Hum. Teknol., 2018, doi: 10.34128/jht.v4i1.37.

B. D. Setiawan, F. A. Bachtiar, and G. Ramadhona, “Prediksi Produktivitas Padi Menggunakan Jaringan Syaraf Tiruan Backpropagation,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., 2018.

H. W. Herwanto, T. Widiyaningtyas, and P. Indriana, “Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi,†J. Nas. Tek. Elektro dan Teknol. Inf., 2019, doi: 10.22146/jnteti.v8i4.537.

A. Fitri Boy, “Implementasi Data Mining Dalam Memprediksi Harga Crude Palm Oil (CPO) Pasar Domestik Menggunakan Algoritma Regresi Linier Berganda (Studi Kasus Dinas Perkebunan Provinsi Sumatera Utara),†J. Sci. Soc. Res., vol. 4307, no. 2, pp. 78–85, 2020, [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR.

I. R. Akolo, “PERBANDINGAN EXPONENTIAL SMOOTHING HOLT-WINTERS DAN ARIMA PADA PERAMALAN PRODUKSI PADI DI PROVINSI GORONTALO,†J. Technopreneur, 2019, doi: 10.30869/jtech.v7i1.314.

V. Wuwung, N. Nainggolan, and M. Paendong, “Prediksi Harga Beras Sultan dan Membramo di Kota Manado dengan Menggunakan Model ARIMA,†J. MIPA, 2013, doi: 10.35799/jm.2.1.2013.739.

E. Kurniawati and O. Yantri, “PEMODELAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA DI BATAM DENGAN MENGGUNAKAN ARIMA DAN REGRESI TIME SERIES,†J. Dimens., vol. 7, no. 3, 2018, doi: 10.33373/dms.v7i3.1716.

N. Syamsiah Oktaviani and I. Purwandani, “Penerapan Neural Network Untuk Peramalan Data Time Series Univariate Jumlah Wisatawan Mancanegara,†J. Mantik Penusa, vol. 3, no. 3, 2019.

C. C. Chen, J. H. Chang, F. C. Lin, J. C. Hung, C. S. Lin, and Y. H. Wang, “Comparison of Forcasting Ability between Backpropagation Network and ARIMA in the Prediction of Bitcoin Price,†2019, doi: 10.1109/ISPACS48206.2019.8986297.

H. Prasetyanwar and Jondri, “Peramalan nilai tukar IDR-USD menggunakan long short term memory,†e-Proceeding Eng., vol. 5, no. 2, 2018.

A. Hamdianah, “Comparison of Neural Network and Recurrent Neural Network to Predict Rice Productivity in East Java,†J. Inf. Technol. Comput. Sci., vol. 5, no. 3, 2021, doi: 10.25126/jitecs.202053182.

A. M. Bahador, “The accuracy of the LSTM model for predicting the S&P 500 index and the difference between prediction and backtesting,†Degree Proj. Technol., 2018.

K. Park, J. Kim, and J. Lee, “Visual Field Prediction using Recurrent Neural Network,†Sci. Rep., vol. 9, no. 1, 2019, doi: 10.1038/s41598-019-44852-6.

A. Moghar and M. Hamiche, “Stock Market Prediction Using LSTM Recurrent Neural Network,†in Procedia Computer Science, 2020, vol. 170, doi: 10.1016/j.procs.2020.03.049.

A. H. Bukhari, M. A. Z. Raja, M. Sulaiman, S. Islam, M. Shoaib, and P. Kumam, “Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting,†IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2985763.

S. Siami-Namini and A. S. Namin, “Forecasting Economics and Financial Time Series: ARIMA vs. LSTM,†pp. 1–19, 2018, [Online]. Available: http://arxiv.org/abs/1803.06386.




DOI: https://doi.org/10.35314/isi.v7i2.2599

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


This Journal has been listed and indexed in :

Crossref logo Find in a library with WorldCat

Copyright of Jurnal Inovtek Polbeng - Seri Informatika (ISSN: 2527-9866)

Creative Commons License
ISI: Inovtek Polbeng Seri Informatikan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Editorial Office :
Pusat Penelitian dan Pengabdian kepada Masyarakat
 Politeknik Negeri Bengkalis 
Jl. Bathin alam, Sungai Alam Bengkalis-Riau 28711 
E-mail: [email protected]
www.polbeng.ac.id

Web
Analytics
View My Stats