Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network

Haidar Fakhri, Setiawardhana Setiawardhana, Iwan Syarif, Riyanto Sigit

Abstract


Metode klasifikasi citra MRI otak yang digunakan pada penelitian ini adalah Deep Learning dengan Convolutional Neural Network (CNN) dengan 2 model skema arsitektur CNN. Model skema 1 terdapat 2 max pooling layer dan 2 hidden layer, sedangkan model skema 2 terdapat 3 max pooling layer dan 4 hidden layer.  Dataset yang digunakan memuat citra MRI otak manusia dengan total 7023 citra, dengan rincian 1621 Glioma, 1645 Meningioma, 1757 Pituitary, dan 2000 Notumor. Evaluasi F1-Score model skema 1 dan skema 2 berturut-turut: 96% dan 97%, Sedangkan untuk nilai Accuracy yaitu 98%. Hal ini menunjukkan bahwa nilai F1-Score dan Accuracy, model skema 2 lebih baik. Untuk menguji dataset digunakan 10 fold cross-validation menghasilkan nilai rata-rata Accuracy, F1-Score, Precision, dan Recall berturut-turut 0,8520, 0,8470, 0,8493 dan 0,8504, dengan standar deviasi yang kecil, yaitu berturut-turut 0,0352; 0,0346; 0,0337 dan 0,0353 yang menunjukkan bahwa penyimpangan sebaran nilai semakin mendekati nilai rata-ratanya. nilai metrik F1-score dan accuracy berturut-turut, 97,47% dan 97,39%. Hasil accuracy penelitian ini lebih tinggi dibandingkan dengan beberapa penelitian sebelumnya, yakni dari [1], [2], [3], [5], [7], dan [8], berturut-turut: 94.39%, 97.54%, 97.18%, 96.08%, 96,36%, dan 95.55%.


References


Sunanda Das, O.F.M. Riaz Rahman Aranya, Nishat Nayla Labiba, “Brain Tumor Classification Using Convolutional Neural Networkâ€, Khulna University of Engineering & Technology, Bangladesh, 2019.

Hossam H. Sultan, Nancy M. Salem, Walid Al-Atabany, “Multi-Classification of Brain Tumor Images Using Deep Neural Networkâ€, IEEE Access Volume 7, 2019.

Yakub Bhanothu, Anandhanarayanan Kamalakannan, Govindaraj Rajamanickam, “Detection and Classification of Brain Tumor in MRI Images using Deep Convolutional Networkâ€, 2020 6th International Conference on Advanced Computing & Communication Systems (ICACCS), India, 2020.

Noor-E-Jannat Moutushi, Kusum Tara, “Comparison among Supervised Classifier for Classification of Brain Tumorâ€, Rajshahi University of Engineering (RUET), Bangladesh, 2020.

Chirodip Lodh Choudhury, Chandrakata Mahanty, Raghvendra Kumar, Brojo Kishore Mishra, “Brain Tumor Detection and Classification Using Convolutional Neural Network and Deep Neural Networkâ€, GIET University Gunupur, India, 2019.

Anil Singh Parihar, “A Study on Brain Tumor Segmentation Using Convolutional Neural Networkâ€, Delhi Technological University, India, 2017.

Wadhah Ayadi, Wadji Elhamzi, Mohamed Atri, “A new deep CNN for brain tumor classificationâ€, 20th international conference on Sciences and Techniques of Automatic control & computer engineering (STA), Tunisia, 2020.

Gajendra Raut, Aditya Raut, Jeevan Bhagade, Jyoti Bhagade, Sachin Gavhane, “Deep Learning Approach for Brain Tumor Detection and Segmentationâ€, 2020 IEEE International Conference on Convergence to Digital World – Quo Vadis (ICCDW 2020).

Diah Priyawati, Indah Soesanti, Indriana Hidayah, “Kajian Pustaka Metode Segmentasi Citra Pada MRI Tumor Otakâ€, Prosiding SNST (Seminar Nasional Sains dan Teknologi) ke-6 Tahun 2015, FT Universitas Wahid Hasyim Semarang.

Rachmad Andre R, Baghas Wahyu P, dan Rani Purbaningtyas, “Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Dengan Arsitektur Efficientnet-B3â€, Jurnal Sistem Informasi, Teknologi Informasi dan Komputer, Universitas Muhammadiyah Jakarta, Vol. 11, No. 3, May 2021, pp. 55 – 59.

Hasnain Ali Shah, Faisal Saeed, Sangseok Yun, Jun-Hyun Park, Anand Paul, Jae-Mo Kang, “A Robust Approach for Brain Tumor Detection in Magnetic Resonance Images Using Finetuned EfficientNetâ€, Basic Science Research Program through the National Research Foundation of Korea (NRF), Korea, 2022.

Uswatun Hasanah, Riyanto Sigit, Tri Harsono, “Classification of Brain Tumor on Magnetic Resonance Imaging Using Support Vector Machineâ€, 2021 International Electronics Symposium (IES), Electronic Engineering Polytechnic Institute of Surabaya.

Annisa Wulandari, Riyanto Sigit, Mochamad Mobed Bachtiar, “Brain Tumor Segmentation to Calculate Percentage Tumor Using MRIâ€, 2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), Informatics and Computer Departement Electronic Engineering Polytechnic Institute of Surabaya.

Rizal Romadhoni Hidayatullah, Riyanto Sigit, Sigit Wasista, “Segmentation of Head CT-Scan to Calculate Percentage of Brain Hemorrhage Volumeâ€, 2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), Informatics and Computer Departement Electronic Engineering Polytechnic Institute of Surabaya.




DOI: https://doi.org/10.35314/isi.v9i1.3908

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


This Journal has been listed and indexed in :

Crossref logo Find in a library with WorldCat

Copyright of Jurnal Inovtek Polbeng - Seri Informatika (ISSN: 2527-9866)

Creative Commons License
ISI: Inovtek Polbeng Seri Informatikan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Editorial Office :
Pusat Penelitian dan Pengabdian kepada Masyarakat
 Politeknik Negeri Bengkalis 
Jl. Bathin alam, Sungai Alam Bengkalis-Riau 28711 
E-mail: [email protected]
www.polbeng.ac.id

Web
Analytics
View My Stats